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The findings in this  report are not to be construed as an official Depart- 
ment of the Army position unless  so designated by other authorized 
documents. 

When Government drawings,   specifications,   or other data are  used for 
any purpose other than in connection with a definitely related Government 
procurement operation,   the United States Government thereby incurs  no 
responsibility nor  any obligation whatsoever;  and the fact that the 
Government may have formulated,   furnished,   or in any way supplied the 
said drawings,   specifications,   or other data is not to be  regarded by 
implication or otherwise as in any manner licensing the holder or any 
other person or  corporation,   or conveying  any rights or permission,   to 
manufacture,   use,   or sell any patented invention that may in any way be 
related thereto. 

Disposition Instructions 

Destroy this  report when no longer needed.     Do not return it to the 
originator. 

mäsM iv 

SfSfl WHITE SECTIJI □ 

W RUff SECTIOH 

D». t")ii»cro Q 

•■:;, im 

1/ 

öMTtfä'wiv/m.ftum' COOK 

(l«t.       AVAIl.  .mil of SPCWAl 



DEPARTMENT OF THE ARMY 
HEADQUARTERS US ARMY AVIATION MATERIEL LABORATORIES 

FORT EUSTIS, VIRGINIA 23604 

This program was carried out under Contract DAAJ02-68-C-0035 with 
Stanford University. 

The research was directed toward the development of techniques for 
predicting the effects of interlaminar shear on the bending and buckling 
of laminated beams.    Two specific problems are studied:   bending 
under uniform load and buckling of simply supported beams. 

The report has been reviewed by the U.   S.   Army Aviation Materiel 
Laboratories and is considered to be technically sound.    It is published 
for the exchange of information and the stimulation of future research. 



Task 1F162204A17002 
Contract DAAJ02-68-C-0035 

USAAVIABS Technical Report  70-7 
March 1970 

EFFECTS OF INTERLAMINAR SHEAR ON THE BENDING AND BUCKLING OF 

LAMINATED BEAMS 

Final Report 

By 

H. Durlofsky 

J. Mayers 

Prepared by 

Department of Aeronautics and Astronautics 
Stanford University 
Stanford, California 

for 

U.S.  ABMY AVIATION MATERIEL IABORATORIES 
FORT EUSTIS, VIRGINIA 

NECEDING PAGE BUNK 
This document is subject to special export controls,  and 

each transmittal to foreign governments or foreign nationals 
miy be made only with prior approval of U.   S.   Army 

Aviation Materiel Laboratories, Fort Eustis,  Virginia   23604. 



SUMMARY 

The governing equations for laminated beams  are developed by variational 

methods.     The beams are considered to consist of    n    laminae and    n-1 

bond layers, where    n    can be any reasonable number greater than one. 

The bond thicknesses  are assumed to be small in comparison with those of the 

laminae.     The effects of shear strains  and direct strains normal  to  the 

bending axis in the bond layers are included.     Two specific problems are 

solved: bending under uniform load and buckling of simply supported 

beams.     Curves  are presented which show the effect of bond  flexibility. 
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FOREWORD 

The work reported herein constitutes a portion of a continuing effort 

being undertaken at Stanford University for the U. S. Army Aviation 

Materiel Laboratories under Contract DAAJ02-68-C-0035 (Task 1F162204A17002) 

to establish accurate theoretical prediction capability for the static 

and dynamic behavior of aircraft structural components utilizing both 

conventional and unconventional materials. 
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INTRODUCTION 

The bending of multilayer sandwich plates was  investigated by Llaw and 

Little in Reference  1.    In that paper the authors assume the facings  to 

carry only axial loads and inplane shear  (no bending), whereas  the cores 

are assumed to carry only transverse shear stress.     Stress resultants are 

then formulated which reflect the contributions of the cores and the 

facings subject to the above assumptions.    Minimization of the total 

complementary energy,   in a procedure similar  to that carried out by 
2 

Reissner in presenting a theory for the bending of nonhomogeneous 

elastic plates, leads to the governing equations for a multilayer plate. 

Since the multilayer effect is contained in the stress resultants, the 

final equations for the stress resultants are the same as those for a 

single sandwich plate except for the definition of the physical constants. 

Inherent in the Llaw and Little analysis is the assumption of the same 

shear angle for all core layers. The validity of this assumption was 
3 

investigated by Kao and Ross ; they considered a beam composed of three 

facings and two core layers. By allowing the structure to have four 

degrees of freedom, an Inplane displacement function for each face and an 

out-of-plane displacement function for the structure as a whole, the two 

core layers are then capable of having different shear angles. Minimiza- 

tion of the total potential energy with respect to each degree of 

freedom leads to the generation of the governing equations for the system. 

In both References 1 and 3, the core depths must be considered large in 

comparison with the thickness of the facings.  Although, in Reference 3, 

the bending capability of the facings is included, the strain-displacement 

relations for the core shears are not valid when the facings are thick 

since they do not Include the effect of rotation of the facings. Refer- 

ence 1 provides no way of accurately estimating the significant bond 

stresses, since the theory deals only with average effects across the 

overall plate depth.  From the analysis in Reference 3, an estimate of the 

bond shear stress is possible; however, estimates of the peel strength of 

the bonds are not possible since the peel strength depends on the direct 

stress in the bond layer in the direction normal to the bending axis. 



Also, in Reference 3, the theory and its application are limited to a 

beam coneitting of three laminae. 

Thia report deals with laminated beams in which the bond layers are 

small in comparison with the thickness of the laminae. By utilization 

of variational techniques to establish the governing equations and 

associated boundary conditions, the effect of the bond flexibility on the 

buckling and bending of laminated beams is studied. The analysis is 

performed for a beam consisting of n laminae and n-1 bond layers, 

where n can be any reasonable number greater than one. From the results 

of the bending analysis, the shear stresses and direct stresses normal to 

the bending axis in the bond layers can be calculated. Such information 

is of prime importance in the design of laminated beams. 

The laminated beam is considered to have 2n degrees of freedom, an 

inplane and an out-of-plane displacement function corresponding to each 

lamina (see Figure 1). The total potential energy fxmntional is then 

formulated in terms of these 2n displacement functions. Coupling of 

the individual laminae is achieved by describing the strain energy of the 

bond layers in terms of the displacement functions of the laminae they 

connect. 
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BASIC THEORY 

STATEMENT OF PROBIZM AND BASIC ASSUMPTIONS 

The problem considered herein is that of analytically formulating the 

behavior of an n-ply laminated beam (see Figure  1) with nonrigld bond 

layers, and applying this formulation to the problem of bend- 

ing of laminated beams under a uniformly distributed  load  and to the 

problem of buckling of  laminated beams under axial loading. 

The development is predicated on the following assumptions: 

1. For the individual  laminae,   all of  the assumptions made in the 

engineering theory of beams are assumed to apply. 

2. The laminae all have the same elastic and geometric properties. 

3. The bond layers  all have the same elastic and geometric 

properties. 

4. The end condition for the structure as a whole is that of simple 

support. 

5. The individual laminae at the ends of the beam are not restrained 

in any way from axial movement. 

6. The bending stresses and axial stresses parallel to the bending 

axis  in the bonds  are negligible. 

7. The stress   through the thickness of a bond layer is constant. 

STRAIN-DISPLACEMENT RELATIONS FOR A BOND  LAYER 

As derived in Appendix I,  the shear strain in a bond layer (see 

Figure 2)  is given in terms of the axial and lateral displacements of 

the    i    and    i+1    laminae as 

7* = 
Vui+i /dw.       dw-.A 
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Figure 2.  Geometry of Assumed Transverse Shear Deformation in Bond Layers 
of Laminated Beams. 



STRAIN-DISPIACEMENT RELATIONS FOR A LAMINA 

In accordance with elementary beam theory, the axial strain in the ith 

lamina la 

du1 d2w1 

(2) 

STRAIN ENERGY IN A LAMINATED BEAM 

The strain energy stored in a laminated beam, with, flexibility effects 

included, la 

u - iij + u2 + u3 (3) 

«here U. la the strain energy due to transverse shearing deformations 

of the bond layers, U. is the average strain energy in the bond layers 

due to the bonding agent compressibility in the thickness direction, 

and U- Is the strain energy associated with stretching and bending of 

the laminae. The quantities U. and U. are derived in Appendix I. 

Thus. 

U ■ L iry prVi - TldT+ -£-)] dx 

i-i 

n-l 

E    ^"/^i+l"«!^ 
1-1 K       0 

1-1 l        0 0   Xdx    ' 
dx (4) 

VARIATIONAL PRINCIPLE. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

Bending Under Distributed Loading 

For the bending problem (see Figure 3),  the total potential energy 

stored in the system is 



-vSg/lvvx-^^i *x 

1-1 

■,-l'E.b    l 

+ E ^■/fi+i-'AI 
i-i 

du 

+ EW©-^ (£)4M *   <» 
i-i 

where    V      Is the potential of the distributed load acting over the surface p 
of the 1-1 laminae. 

As developed In Appendix ,11 the extremes of U + V with respect to the 

2n dagraca of freedom u. and w (1 - l,2,...,n) are the 2n Euler 

equations 

H4 
a wJ v v El    -f -  (1-641-6,J  -r- (-w^, + 2w,   - w^^+CB,,) -f-(w,-w,) o iJ*        v' ~11 "in'     t     v "1-1  '   '"1      "i+l'^^il'    t vwl    ^ 

ERb G_b(cft) 
+ (6..) HHw -w_ ,)•&,.) In      t      n    n-1    v In 2t 

,2 ,2 

du        L'U    , 
 n n-1 
dx dx 

^/d w        d w    ,1 c+tl n n-1 
2  \dx2 dx2    i 

-(6.,) 
GBb(eft) 

11' 2t 

dU^      d^ 

dx~ " dx~ 

H-t^S   ,   d2wl\ 
"^Idx2        dx2 / Vdx'        dx 

.2 

(1-6,   -S) 
GBb(oft) 

11    in' 2t 

du du 
i+1 i-1 

dx dx 

2 A2 
a w. oft/d wi-l  .   T 

d V  d Wi-n\ 
^dx2 dx2 dx2    / 

"(^^P - 0 

1 - 1|2,...In 

(continued) 



d2u G_b 
-Ebc -^ -   (6il) -f 

dx 

GBb 

+<1-6ir&in) -F 

u2-ui + — IdT + dT/J 

■ui-i+2ui-ui+i 
+ —l"^ dT-/ 

GBb /dw        dw .   of t |     n ^       n-1 
VVi + T IdT + ^dT-J = o 

i =  1,2,...,n    (6) 

The associated boundary conditions obtained from the variational pro- 

cedure carried out  in Appendix II are  the    3n    relations 

El 
A2       L 
a w i 

0   A2 
dx 

=  0 or — 6w. dx      i =  0 i=  l,2,...,n 

.3 d w 
-El 

0dx3 

G_b((H-t) 

ir     2t 

+(l-641-6,   ) 
GBb(eft) 

il    in7        2t 

+ cft/dwl + 
dw2\ 

U2^i + ~\dr+dr/ 

^ oftfal-H .   - dwi   ,   dwi-l) 
ui+rui-i + ~\"dr^+2 dx + dx / 

+ 6 
GBb(cft) 

in        2t 

,     /dw       dw    A (H-t ( __n n-1) 
VUn-l + ~\dr+    dx    / =   0 

or 

Ebc 
du, 

dx 
= 0 or 

bv. =   0 

0 

L 

Su, =   0 

1=  l,2,...,n 

i =  1,2 n    (7) 



Buckling Under Axial Loading 

For the beam buckling problem (see Figure 4), the total potential energy 

stored In the system Is 

n.v Vl^rl eft/dwl + 
dwl+l| UfVp= l^iirj |ui-ui+i- —ldr + -d7-/ 

1-1 [        0 

dx 

""^Eb      -L !E b     /• 

ir J [wl+^
wl]2d, 

1=1 

1-1 l 0 0 

dx 

1=1 l    o ' 

(8) 

where V  Is the potential of tne axial load applied over the end sur- 

faces of the beam laminae. The particular relation for V  Is presented 

In Appendix III. 

As developed In Appendix III, the extreme of U + Vp with respect to 

the 2n degrees of freedom u  and w.  (1 • l,2,...n)  are the 2n 

Euler equations 

4 
d w E b E b 

El —T^ -(1-6 -6  ) -=- (-w   + 2w - w  )+(6  ) -=- (v  -w ) 
o dx4  

V1 11 "in'    t ^ 1-1    1   1+1; ^ IT t ^1 2' 

E b G b(c+t) 

in  t   n n-1   In    Zt 

du   du . 
 n    n-1 
dx " dx 

2     2 
d w   d w c+t / n    n-l\ 

2 \dx2    dx2 I 
-(6.,) 

GBb(c+t) 

11'   2t 

du   du 

dx" " dx~ 

(continued) 



'd w»      d w. 
oft/dv2 ,  dwlV 

2   \dx2       dx2 ). 
(l-6.i-^J 

GBb(eft) 

11    In'      2t 

dVi   dui-i 
dx dx 

/d2v ^      d2w. oft/dVl ,  /^ ,  dwl+l\ 

Mdx2     +2
dx

2+   d.2    / 

.2 
Q    W 

+ J—2'- 0,    1-1,2 n 
dx 

d2u. 

ax V-x^&^ll 
GBb 

-Ui-1 + 2ul  " Ui+1 + 
eft /dwi-l 

2    \ dx 

dw 
i+1 

dx 

lsl,2,... ^n 

(9) 

The associated boundary conditions obtained frcm the varlatlonal procedure 

carried out In Appendix III are the    3n   relations» 

d w    | 
EX   —ri       - 0 or 

dx        0 
d^^l 

1—1,2,...,n 

d3w. G b((H-t) 

dx 

G-b(eft) 

GBb(oft) 
+<Bln) ^Tt 

+ oft /dwl + 
dw2\l 

VU1 + ~ IdT + dT/J 

n       +^t(dwi+l+2
dwl + 

dwl-l\ 

+ c+t/
dwn+

dwn-l\|     l^lT-o 
VVi + T \Sr + "£~/J - n dT       0 

or &w. - 0 1—1,2,...,n 

(continued) 
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Ebc 
du, 

dx - 0 or S     -0 1-1,2 n    (10) 

U 
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Figure 3.    Laminated Beam Under Uniformly Distributed Loading. 
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METHOD OF SOLUTION 

For the two problems being investigated,   the bending of a laminated beam 

under lateral loading and the buckling of a simply supported  laminated 

beam under axial  loading,  the governing equations and boundary conditions 

are prescribed in equations  (6) and  (7) and (9) and (10) respectively. 

BENDING UNDER DISTRIBUTED LOADING 

In the bending problem,  the complexity of the equilibrium equations  (6) 

precludes straightforward integration and solution consistent with the 

boundary conditions of simple support.     Thus    w.    and 

as 

are assumed 

w 

u 

and used in conjunction with 

a      gin Ji« 
aij  Sln    L 

1,2,...,n 

12 oo (ID 

J JUX = d      cos 
ij L 

—  1,2,... ,n 

=  12 « (12) 

he total potential energy, equation (5), to 

effect a Rayliegh-Ritz approximate solution.    Both   u.    and    w.    have 

been selected to satisfy the geometric boundary conditions for simple 

support.    As shown in Appendix IV,  the application of the minimum total 

potential energy principle leads to the equilibrium relations 

(El Ii4 + \^h+
e±üniä£ii 

\,3l   * [  2t; t 8L 
(2-8irV "ij 

E^bL      GJb   r.   ,   ltv-.2 ) 

2t   +   t        8L U 0irai-i j 

(continued) 
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i 

j 

1,2,...,n 

1,2,...,» (13) 

Jn GBb(cft) 

4t 

Jx C-b(<rt-t) R 
<1-6ii)Vi i + 

<l-8itt>i+i j 
+ 

Jn GBb(c+t) 

4t 

GBbLl 

2t 

^in^ilJ'tJ 

(^il^^.l J 

2        L 2t    vz        il       in' U 

G bL 

2t <1-6inJd
tfl j - 0 1 — 1,2,...tn 

j « 1,2,...,» (14) 

In aatrlx form, equations (13) and (14) become, g—ftttoftiy. 

CÄ1]J ^i^ + ^2^  ^l^ ' ^J 

CA3]J  ^l^J + ^4^  ^J " 0 

J -  1,2,...,« 

j - 1,2,...,« 

(15) 

(16) 

The matrices    [AjL,  C^j»  ^A3^'    'nd    ^A4^1    are S^ven in Appendix V. 

14 



Solution of equations (15) and (16) for (a.)  and (d )  gives 

(a^j - [B^"1 iC1)j 1- 1,2....fn        (17) 

(d^j - -[A^j1 •   ^Dj   [B^j1 (C^j j - 1,2,....n (18) 

where    [B|L    !■■ given by 

[Bjlj -  [A1]j -  [Ajlj  •   [A^1 •   ^Jj j « 1,2 n (19) 

The application of equations  (17),   (18), and (19)  to the laterally 

loaded beam shown In Figure 4  leads to the results plotted in Figures 5, 

6, and 7. 

BUCKLING UNDER AXIAL LOADING 

In the beam buckling problem,  the equilibrium equations  (9) and the 

corresponding boundary condition equations (10) are all satisfied by 

the displacement functions 

w   = a    sin — 1 =  l,2,...,n (20) 

ul = dl C08 I" i = 1»2»-"»n (21) 

Substitution of equations (26) and (21) Into the equilibrium equations 

(9) leads to two sets of n algebraic equations as shown in Appendix V. 

In matrix form these equations are 

[A5] («i) + [A6] (d^ = 0 (22) 

[A7] (a^ + [Ag] (d^ = 0 (23) 

The matrices [A-], [A,], [A-], and [A.] are given in Appendix V* 

Solvli 

gives 

Solving equation (23) for (d ) and substituting into equation (22) 

[B2] (ai) = 0 (24) 

15 
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where 

[B2] -  [A5] -   [AglfAg]"1^] (25) 

For nontrlvial solutions of    (a )    to exist,     [B. ]    must vanish.    Thus 

the eigenvalues of    [B-]    give the b' ckilng values. 
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DISCUSSION OF RESULTS 

The equations developed in this report for the bending and buckling of 

laminated beams have been applied to two specific constructions, one a 

two-ply and the other a six-ply section as shown in Figure 5. The curves 

plotted in Figures 6, 7, and 8 and the data in the table on page 23 have 

been derived from the bending solutions. The curves plotted In Figure 9 

have been developed from the buckling solutions. 

Figures 6 and 7 show the effects of variations of the bond elastic 

properties on the beam deflections for the two-ply and six-ply beams, 

respectively. The deflection values have been nondimenslonalized with 

respect to the deflection obtained when the bond layers are Infinitely 

rigid In shear and compression normal to the bending axis. As shown in 

Figures 6 and 7, the beam deflections are significantly affected by both 

the shear modulus and the extenslonal modulus of the bond layers.  For 

low values of the bond shear modulus, the laminae tend to deflect as 

Individual beams and, hence, the deflection increases. For low values 

of the bond extenslonal modulus, the bond layers tend to compress, 

causing additional lateral deflection of the beam. There appears to be 

little quantitative interaction between these two effects, however, as 

the curves In Figures 6 and 7 are essentially parallel. 

The shear stress In the bond layers, shown in Figure 8, is found to 

depend essentially on the shear modulus of the bond layers and to be 

relatively unaffected by variations in the bond extenslonal modulus. 

The shear stresses plotted in Figure 8 have been nondimenslonalized 

with respect to the shear stress of a beam with infinitely rigid bond 

layers.  This Is, of course, the shear stress of elementary beam theory, 

T ■ VQ/Ib.  As shown in Figure 8, the actual bond shear stress does not 

vary significantly from the shear stress of elementary beam theory for 

reasonable values of the bond shear modulus. Furthermore, It is useful 

to note that the elementary beam theory shear stress is conservative. 

Hence, for design purposes, the elementary beam theory shear stress may 

be used. 
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The extenslonal stresses in the bond layers due to bending are given In 

the table below for the beau* studied. 

MAXIMUM QI1SCT 133188  IM MAMS 

EB/E 

a     ft max 

Two-Ply BLx-Ply 

0.001 

0.001 

0.1 

0.00525 

0.00645 

0.00741 

0.00800 

0.00884 

0.00916 

a, max bending stress In beam with rigid bonds 

The extenslonal stresses in the bond layers are found to be relatively 

unaffected by variations in the bond shear modulus.    Also, as  shown In 

the table, the direct stress is not greatly affected by variations In the 

extenslonal bond modulus. 

The buckling loads  of the  laminated   beans studied sre found to depend 

essentially on the bond shear modulus, with variations in the bond 

extenslonal modulus having virtually no effect.    The buckling loads 

presented in Figure 9 have been nondimensionalised with respect to the 

buckling load   of a beam with rigid bond layers.    As shown In Figure 9, 

the buckling loads are significantly affected by variations  In the bond 

shear modulus; in fact, for beams of low bond shear modulua,   the laminae 

tend to buckle individually.    It is of interest to note that although 

only one deflected shape is assumed,  as given by equations   (26)  and   (21), 

the buckling solution yields    n    eigenvalues.    This is attributed to the 

fact that within the restriction of the deflected shape implicit in (26) 

and (21),   the beam can still develop n-mode shapes.    That is,  separation 

can occur at one interval bond layer with the result that the  laminae 

on each side of the separation move In oppoaite direction*.    Two possible 

modes for a four-ply beam are shown In Figure 10.    However,  for reasonable 

values of the extenslonal bond modulus   (high peel strength),   the eigen- 

values corresponding to the mode shapes shown in Figure  10 are precluded. 
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Figure 10. Two Possible Buckling Modes for a Four-Ply Laminated Beam. 
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CONCLUDING REMARKS 

The analysis presented herein Is the first step toward development of a 

general theory and solution procedure for  laminated plates and shells. 

The distinguishing feature of the theory Is that the transverse shear and 

extenslonal flexibilities of the bond layer between two laminae are 

Included.    The extension of the present governing equations and boundary 

conditions to plate and shell elements Is  straightforward with the 

Incorporation of the appropriate two-dimensional strain-displacement 

relations In the varlatlonal principle.    The quantitative results obtained 

for the bending and buckling of two- and rlx-ply beams reflect  significant 

effects of bond flexibility;  also,  they Indicate that redistribution and 

amplification of the bond stresses would occur under conditions wherein 

the laminae are not permitted to move relative to one another at the beam 

boundaries.    This certainly Is the case to be expected In practice. 

Thus,  further effort should be expended on the boundary problem as well 

as on developing both qualitative and quantitative information for laminated 

places and shells.     In qoncluslon.  It should be noted that two of the 

basic assumptions on which the present analysis is based are that all of 

the laminae and all of the bond layers possess the same elastic and 

geometric properties.    However,  the analysis presented herein is easily 

modified for beams with nonuniform bond layers and/or nonuniform laminae. 

The nonzero elements in the matrices given in Appendixes IV and V can be 

modified to accommodate property changes between the laminae and the bond 

layers. 
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APPENDIX I 

STRAIN-DISPIACEMENT REIATIONS FOR BOND LAYERS AND STRAIN 

ENERGY IN BOND IAYERS 

The strain-displacement relationships for bond shear and extenslonal 

strains normal to the bending axis are developed In this appendix. The 

consideration of two adjacent laminae with their connecting bond layer 

and the distortion of a typical cross-section a-a (as shown in Figure 2) 

leads to the displacement of a point on the upper edge of the bond layer 

due to bending given by 

dw 
6i = ui-fdr <26> 

At the lower edge of the bond,a point originally on section a-a is dis- 

placed a distance 

c  1-fl /0_. 
52 ■ Ul+1 + 2 -ST (27) 

Thus,  if it is assumed that the angle of distortion of the bond layer is 

constant across the thickness,  then this angle of distortion is 

t t urui+i 2 \dx    +    dx    /. (28) 

The angle a includes two effects. One is the shear distortion of the 

bond layer and the other is the slope of the bond layer due to bending. 

Under the assumption that bending resistance of the bond layer is negli- 

gible, this latter effect is, quantitatively. 

Ul  2 \dx    dx / (29) 

Thus, the angle a can be written as 

Use of equation (28) gives 

i /dwi , dVi\ 
2 \dx dx   I 
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7B = 

Ul-Ui+1 
(31) 

For thin bond layers the extensional strain normal to the bending axis can 

be assumed constant.    Thus,   this strain component is 

ez = 

wi+rwi 

The strain energy in the bond layers is then 

U
B 

s LsjrJ  ui-ui+i" -T\dr+ "dT"/ 
i=l l 0 

dx 

(32) 

. EBb    /*   r ^   : + 2rJ [wi+r
wi] dx, (33) 
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APPENDIX II 

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

FOR BENDING UNDER DISTRIBUTED LOADING 

For the bending problem shown in Figure 3, the potential of  the applied 

loads is 

J      pbw1 dx (34) V    =  - 
P 

0 

The strain energy associated with bending and stretching of the laminae 

is 

vEh'/ia'.^/ft)" L  IJk2     K1 

dx}        (35) 

i=l v 0 0 

From equations (33), (34), and (35), the total potential functional is 

n  /    '   L /-l  V2     rT     L  .2   2   v 

V)GBb      f\ c+t/^i + 
dwi+l\]2, 

ZJITT J [ui-ui+i ■ -TW + iT-Jl dx 

i=l o 

EBb      / 2     ) / 
+ 2rJ   fWi+r

wi] dx|  -    y    P'b-w^dx 
0 0 

The variation with respect to w  gives 

d w.  d 5w. 

(36) 

/aw.   a ow 

IT ' ~J~ W.     p      0      J .   I ./ 
i "  dx     dx 

--V V ¥ W k" V: *¥ (^-Nl 
(continued) 
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k *id* +<l-Bii-6in) i- / <-Vi+ 2wi - vi+i
)Bv* 

GBb 

'iTj lvui+ 2\dr+dr/J"drdx 

E b       - 
+(611) -|-    J    [w1-w2]6w1 dx 

,-    .  GBb      cft      r   f , oft /^l , dwn\ 
■(6in) T     W   J    [Un-Vl + T \"d!r + dT/ 

d&w 

dx dx 

E b 
dx - 0 

i ■ 1,2,...,n (37) 

Integration by parts leads to the set of n coupled, differential 

equations and 2n associated boundary conditions giver, by 

dV E b E b 
EIo -pr -<l-\i-\n> -r <-i-i+ 2wi -wi+i>+<5ii> -r^r^5 

dx 

E-b G b(eft) 
+(6in> -r<vvi)-(Bin) -hr- 

du       du    .  n _      n-1 
dx dx 

du2      dxxl 

dx        dx 

M (I-6.1-6.J 
GBb(cft) 

11    in'        2t 

dui+l      dui-l 
dx dx 

2 2 
d w.      d w. oft /d wl-l ,   , d Wi  ,      Vl^ 

2    I    dx2 dx2 dx2   /J 
-(6il)p= 0    1 = 1,2 n    (38) 
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d3w. G b(cft) 

•EIo -T + ^u' ^TT- dx 

+(1-^,-6^) 
GBt(cft) 

11    In'      2t 

u ^ «H-t /dwl ,. dw2\] u2"ui + T IdT + dT/J 

ui+r
ui-i+ "rn^2 dr+ -dr-/J 

+ 6 
GBb(c+t) 

In        2t 
+ c+t /dWn + 

dWn.l\ 

or 

bv. =  0 1 —  1,2,...,n (39) 

EX 
A2 L 
a W 

1 

O   ^   2 
dx 

=  0 or r— Öw. 
dx      1 i - 1,2,...,n    (40) 

The variation with respect to u  gives 

/du   d6u 
__i . --i . dx 
dx   dx 

+(l-5ll-6in) — J [-ui.i+2ui-ui+i+ ~[\dx i dx n s^ 

0 

1 - 1,2,...,n (41) 

Integration by parts leads to the set of n coupled, differential 

equations and the associated set of n boundary conditions given by 
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d2u. G b 
-Ebc -V1 -(B.i) 4- 

dx 
il'    t 

cH-t /du2 + 
dwl\l u2-ui + "T IdT + dT/J 

Gb 
+<1-6ir6in) -f 

dw.   ,       dw. 

■ui-i+ 2ui-ui+i
+ ~(-d^—^r) 

/dw        dw 
+ c+t/awn + 

aWn.l un-un-i + ~ldr + "dr-/ = 

i = 1,2,...,n (42) 

Ebc 
du, 

dx = 0 or Su, =  0        i = 1,2,...,n (43) 
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APPENDIX  III 

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS FOR 

BUCKUNG UNDER AXIAL LOADING 

For the buckling problem shown in Figure 4,   the potential of  the applied 

loads  is 

n L       .       2 

v - E f / KS - 
i-i     o 

With the use of equations   (33)  in Appendix  I  and  equation    (35)  in 

Appendix  II,   the  total  potential  functional  for buckling of  laminated 

beams under axial   loading  is  then 

i-l(        o o       dx    /     ' 

.v!GBb f\       cwd"i dwi+i\i2H 

i-l l 0 

0 '       i«l   *       0 ' 
The variation with respect  to w^    gives 

L   A2 A2* /d w        d ow 

x dx dx 

+ n ^     ^    ^ GBb     ^i    /" [ . c+t/^i-l w 
dwi+l\ +(1-5ii-in) T" • t  y   ui+r

ui-i+ —(-dT-+ "d^/ 

Eb      L 

^ bw^x -Ml-^-V "f  /   (-w^, + 2wi  -wi+1)6wi 

(continued) 
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0 

+<6in> "f 
oft    rf +o+trn-l      dwn\ 
TT J  [VVi + "r\"d^ + dTI 

d&w 
 r 

dx 
dx 

EBb  r 
in      t     J     L n    n-lJ    n 

dw.      d&w 

-«7 dr'irdx"0 1=1'2 n (46) 

Integration of equation (46) by parts leads to the set of n coupled, 

differential equations and the 2n ascociated boundary conditions given 

by 

d4w. E b E b 

El. -IT 'V'hl-hr?     t (-Wi- + 2wi " Wi+l
)+(&il) t (wrW2) dx 

V G..b(cft) 

in  t  n n-i   j.n   2t 

du   du ,  n _  n-1 
dx    dx 

^/d v       dw .Vl     Gb(eft) 
. gfctf  n ,   n-l\ /R x B 

iV        2t dx   dx 

& 4)1 •<"..■ B..) 
GBb(c+t) 

in'   2t 

dui+l  
dui-l 

dx    dx 

A2 
a w A2 A2 

d w.  d w. 

2 I dx2     dx2    dx  / 

.2 
p d w 

+ n  2 " 0 
n dx^     i-i,2 n (47) 
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d w. 
El 

O    A    2 dx 
- 0 or. 

^ 
1-1,2 n        (48) 

dV G b(eft) 

+(1-&41-6,J il ^in'      2t 

G b(eft) 

u2-ui +   lW * ITI I 

ul+l ul-l + lldx        + Z dx    +    dx    /| 

un-un.l +    iXtT + -te/J - n dT     " 0 

GBb(eft) | 

or 

bw  - o 
0 

I - 1,2,...,n   (49) 

The variation of equation (45) with respect to u. give« 

~  du       d6u 
6    (l>fVp)-Ebcy   ^"S* 

1 0 

dx 

•^aV • ¥ / [-Vi^VVi+11^ i+i+ 2 \ dx   + dx /rr 

+<v¥/U-^^)K dx 

+(8 ).V/fu.u     .ttÄufi.1)]^ 
^ in'        t    y    [ n    n-1        2  \dx dx    /J      n 

i - I,.' n        (50) 

Integration of equation (50) by parts gives the set of n coupled, 

differential eqoaftions and n associated boundary conditions given by 
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dV G b 
•Ebc -£ -(6u) -f 

dx 

+ c±t/dw2 + 
dWl\l u2-ui+ 2\dr+dr/J 

GBb 

+<1"6ir6in) T- "Vi + 2ui ■ ui+i + 

G b 

"T\ dx 

,. £tt/dWn A 
dVl\l       n vvi + -T-ldr + ^r-/J -0 

dw 
i+1 

dx 

i =  1,2 n (51) 

Ebc 
dx 

= 0 or &u. i =  1,2,...,n (52) 
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APPENDIX IV 

SOLUTION FOR BENDING OF A LAMINATED BEAM BY A 

UNIFORMLY DISTRIBUTED LOAD 

The boundary conditions for this problem, as given by equations (39), 

(40), and (43) in Appendix II, all are satisfied by the complete displace- 

ment functions 

w^ 

n  <» 

i-l j«l,3 
•ij ^ T (53) 

n   « 

ui= E H dijco8 T (54) 

1=1 J=l,3 

Substitution of expressions (53) and (54) into the total potential 

functional, equation (36) in Appendix II, gives 

2 

UfV - ih f \i (¥'v-* roc 
L 

i=l v 0      Lj-1(3 

L r   oo 

dx 

o    LJ=1, 

-(^)    a      sin 

-1.3 

L  r    m 

dx 

-Sl^/ft al+1 j .mif.f: a^ sin 

i=l v 0       j=l,3 

n-1, L.   - 

j=l,3 

dx 

i»l 
Z-r I 2t    y      -^       i+1 j 

0        j-1.3 

cos E 
j=1.3 

L        ^      dij   C08 L 

+ — 2^ f ai+i jco8 Y+ — 2^ r aijco8 

j-1.3 j»l,3 

roc 
L 

dx 

(continued) 
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0  lJ-l,3 

dx (55) 

Evaluation of tht Integrals In equation (55) gives 

i-ll   J-1,3 j-1,3 

E„b E„b 
n"1 ^E b * 

+ Z-> |2t     ^      2 ai+l "    t    ^     2 aij  i+lj + 2t    A-»     2    ij( 
i-1 l J-1,3 J-1,3 J-1,3 

n-1 G„b 

J-1,3 J-1,3 i-1 

n-1 
G^b G.b 

+ Z-»|2t'^-» 8L ai+l + 2!     Z- 8L aiji 
i-1 l J-1,3 J-1,3 

n-1  '    G_b      * G^b 

1-1  l j-1.3 J-1,3 

n-l/G.b    " G„b 
+ Z-r      t     Z- 4       aijai+lJ        t    Z-» 4 ai+lJ ij( 

i-1 l j-1,3 J-1,3 

+ yl^y  M£t^a d +^y iM£tt)jia   a I 
+   Z-r    t    ^ t        aiJ ij +    t     ^ 8L i+lj ij 

i-1 J-1,3 J-1,3 

'^     t 'U 
(56) 

J-1,3 

Variation of equation (56) with respect to    a,.    leads to 

(El     ,,   ,4      FE-bL      GDb   r.   /   ....,21 j 

(continued) 
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2t L + t    8L   I (1 ^l^l-lj 

Equation (57) can be written as 

i - 1,2,...,. (57) 

cVj ^i^ + fVj ^i^ - ^^j 

where 

^i 

k9      k10 0 0 

kio    kii kio 0 

0 k k If io Ku Kio 

0 0 

0 0 

0 0 

,..      0 0 

0        ...       0 

0       kio    kii    kio 
0 0 k10      k9 

. ic1)i 

(58) 

■agb) 

(59) 

■k12    k12    0 

tA6^ 

•k12      0 

0        -k 12 

0 

0 

0 

0 

0 

0 

k 

0 

0 

12 

0 

0 

0 

0 

0 

-k12      0 '12 

'12      "12 

(60) 
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with 

kÄ - 

"10 

11 

k,Ä - 12 

EI  .4 .4  E bL  Gb r4 ^„,2 

2   .3   2t    t     8L 

2t    t     8L 

EI  ,. N4  E_bL  G b .. .^^,2 

2   .3 + t  + t    4L 

GBb jn(<H-t) 
t    4 

(61) 

Variation of equation (56) with respect to d   yields 

U 

/jnG_b(cft)\ /JnG b(cft)\ 
(^vp)(—f^ }(i.sny .^j + (-^—ji^u 

I    J«G b(cft)\ /    G bL\ 

(■ —!i )<l"Vai+lj 
+  (" "H ^^ll^l-lj 

) a 
ij 

JnG b(cft: 
+!' —!i—^-vn+ij+ 

J 

+ [EbciiLl^ + Vi . K 
+ [  2        L 2t    ^        11        ln;J   1J 

+ (- G-irV - h^W ' 0 

Equation (62)    can be written as 

[A^j  (al)j +  [Aglj   (di)j - 0 

1 - 1,2 n      (62) 

(63) 

where 

cVj 

v12 

k12 

0 

0 

12 

12 

12 

0 

0 

0 

0 

-k 

0 

0 

12 

0 

0 

0 

12 

0 12 

40 

0 

0 

0 

-k12 

k12 

(64) 



^13 

-k 14 

kl4 

15 

kl4 

0 

-k 14 

15 14 

^Vj 
0 

0 

0 

0 

'14 15 

'14 

-k 14 

'13 
(65) 

and 

13 

k,,   - '14 

15 

W (nJ)    +    2t 

GgbL 

2t 

EbcMn)2  ,  GBbL 

2L 2t 

(66) 
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APPENDIX V 

SOLUTION FOR BUCKLING OF A LAMINATED BEAM UNDER 

AXIAL LOADING 

All of the governing equations and boundary conditions developed in 

Appendix III (equations (47),   (48>,   (49),   (51) and (52)) are satisfied by 

the displacement functions 

Wi " 'i iln L i m 1,2,... ,n (67) 

. nx ui - di cos - i - 1,2,...,n (68) 

Substitution of the functions  (67) and (68) into the set of differential 

equations   (47) as given in Appendix III  leads to 

«.'(«•or 2... 
-(VJ2r~Ndn + ?dn-l-72£r^n+Vl^ 

G_b(oft) 

'11 "in'   ^n [" L^t+l^i-l^ ^£2i<'i-l+2Vi+l) 

(B.i) 

GBb(eft) 

il'      2t bW- J "r'Vi' '>2'        -0 -r — w.  -  0 .2  n    i 
Li 

i - 1,2,...,n (69) 

The set of equations (69) can be written in the matrix form 

* [Aj] (a^ + [A2] (d^ - 0 (70) 

•  where 
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0 0 

0 

0 

0 

[Aj] 

2 

0 kl 

(71) 

[Aj]    - 

-k. 
"4 

0 

-k. 

0 

k. 

0 

0 

\ 

0 

0 

0 0 

0 0 

0 

-k. 

(72) 

and 
4 E b        2 GDb(c+t)2        2 „   " 

1       L4      0      2t        L2        4t L2 n 

n2 G^c+t)        E^b 

^2 "    2        4t " 2t 
Li 

k    .n4^    ,  V  ,   n2 V^^)       n2 P 
3      L4 E1o +    t   + L2        2t L2 n 

(73) 

n GBb(cft) 

L        2t 

Substitution of the displacement functions  (67)  and (68) Into the set of 

equations (51)  In Appendix III yields 
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4 Ebc ^ -(V 04 IV'l + I ^2 + v 
L 

G.b n Oft- 

+ »i,-I-K ■ Vi+1-r(v vi' 
l -  1,2 n 

The .et of equetlon» (74)  c.n be written In matrix for» as 

[A3]  (V +  [A4]  (V " 0 

'i+iA 

where 

[A3] 

[AJ 

0 

0 

0 

0 

0 

k5 

0 

0 

k 
8 

0 

■K 

0 

-k. 

0 

0 

0 

0 

0 

0 

0 

0 

-k7 

0 

0 

0 

0 

0 

0 

0 

-k. k8 

-k. 

0 

0 

0 

0 

0 

0 

(74) 

(75) 

(76) 

(77) 

and 
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11 
GBb      c+t 

^ 

R5       L        t 2 

2 G b 
k6 - ^ Ebc + ^- 

L 

7 - 
V 

t 

2 

) 

2GBb 

t 8 
■ n 

? Ebc + 
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